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1. Introduction

The problem of how to compute quantum corrections to the mass of (1 + 1) dimensional

solitons was first addressed by Dashen, Hasslacher and Neveu [1] in 1974. This work was

followed by a decade of activities related to quantum properties of solitons, see [2, 3]. The

subject was re-opened in 1997 in the context of supersymmetric solitons [4 – 7] (see also

reviews [8, 9]). About the same time many methods of calculations appeared, the ones

based on the heat kernel expansion are most important for us [10 – 14].

Previous studies of solitons in noncommutative (NC) theories (cf. [15, 16]) avoided the

problem of quantum corrections to their mass, except for the work [17], where quantum

correction to an NC sine-Gordon soliton were calculated in a couple of leading orders

of the θ-expansion. This paper also reported certain difficulties in calculating the mass

shift, which are probably not specific to the model considered, but rather common to all

time-space NC theories.

The present paper is devoted to calculation of quantum corrections to the mass of NC

kink in (1+1) dimensions. We do not use the θ-expansion. On the contrary, we concentrate

on finite and large values of the noncommutativity parameter. As in [17] we define the

mass shift (the vacuum energy E) as, roughly speaking, half the sum of eigenfrequencies

of fluctuations about the soliton. Such a definitions is hard to justify rigorously since in

time-space NC theories where there is no canonical definition of energy. Some arguments

in favor of treating eigenfrequencies as one particle energies can be found in [18]. Anyway,

E is useful for the discussion of quantum properties of solitons and renormalization.

This paper is organized as follows. The next section contains some preliminary material

on the NC kink and fluctuations about it mostly taken from [19]. In section 3 we study
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spectral density of the fluctuation and renormalization of the vacuum energy (which is done

by adding a mass counterterm to the classical action). Section 4 is devoted to numerical

calculations of the vacuum energy for several values of the NC parameter θ = 2, 3, 5, 7, 10

(in some natural units). The bound state frequencies are evaluated with the help of the

WKB method, while the contribution of the continuous spectrum is calculated by using

an approximating square well potential. We find that quantum corrections to the vacuum

energy grow linearly with θ.

2. Classical solution and fluctuations

We take the classical action of NC φ4 model in 1 + 1 dimensions in the form

S =

∫

d2x

[

1

2
(∂µφ)(∂µφ) − λ

4

(

φ2
⋆ −

m2

λ

)2
]

, (2.1)

where φ2
⋆ ≡ φ ⋆ φ. Star denotes the Moyal product

(f ⋆ g)(x) =

[

exp

(

i

2
Θµν∂x

µ∂
y
ν

)

f(x)g(y)

]

yµ=xµ

, (2.2)

where Θµν is a constant skew-symmetric matrix which can be chosen as Θµν = 2θǫµν with

ǫ01 = 1. After splitting the coordinates into time and space, {xµ} = {t, x}, we have the

following useful formulae

f(x) ⋆ eiωt = eiωtf(x+ θω), eiωt ⋆ f(x) = eiωtf(x− θω) (2.3)

Obviously, static solutions of the commutative φ4 remain also solutions in the NC case.

In particular, we have the kink solution

Φ(x) =
m√
λ

tanh

(

mx√
2

)

. (2.4)

Classical energy of this soliton is

Ecl =
2
√

2

3

m3

λ
. (2.5)

Qualitatively the spectrum of fluctuations above the kink solution in NC φ4 theory

was studied in [19]. Here we repeat some steps from that paper. Let us split φ = Φ + ϕ

with Φ being the kink solution (2.4) and ϕ describing quantum fluctuations. The linearized

equation of motion reads

−∂2
t ϕ+ ∂2

xϕ+m2ϕ− λ(Φ ⋆ Φ ⋆ ϕ+ Φ ⋆ ϕ ⋆ Φ + ϕ ⋆Φ ⋆ Φ) = 0. (2.6)

Since the kink (2.4) is static, we can look for the solutions of (2.6) in the form ϕ = eiωtη(x).

By substituting this ansatz in (2.6) and using the relations (2.3) we obtain the following

equation for η

ω2η + ∂2
xη +m2η − λ(Φ2

+ + Φ+Φ− + Φ2
−)η = 0 , (2.7)
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where Φ±(x) = Φ(x±) and x± = x ± θω. It is convenient to choose the mass units such

that

m =
√

2. (2.8)

Then eq. (2.7) yields

(−∂2
x +M2 + U(x;ω))η = ω2η , (2.9)

where

U(x;ω) = 2(tanh2(x+) + tanh(x+) tanh(x−) + tanh2(x−) − 3) (2.10)

and the constant part M2 = 4 is selected in such a way that U(x;ω) → 0 exponentially

fast for x→ ±∞ and a fixed ω.

3. Quantum energy of the fluctuations

The vacuum energy can be formally defined as a sum of eigenfrequencies of quantum

fluctuations E = ~

2

∑

ω. In NC theories with time-space noncommutativity (in particular,

in all NC theories in (1 + 1) dimensions) it is hard to define a canonical Hamiltonian (due

to the presence of an infinite number of time derivatives) and thus to justify this formula

for E rigorously. Here we follow [17] and accept this definition of the vacuum energy (see

the comments made in section 1 above). More precisely, after taking ~ = 1 we split the

vacuum energy as

E = EB + EC , (3.1)

where

EB =
1

2

∑

ωB (3.2)

is a finite sum over the bound state frequencies. The contribution of the continuous spec-

trum has to be regularized. In the zeta function regularization it reads

EC =

∫ ∞

M
dω ω1−2sρ(ω) , (3.3)

where a regularization parameter s has been introduced which should be put zero at the end

of the calculations. The function ρ(ω) is the spectral density in the continuous spectrum.

By using the well known relation between the spectral density and the phase shift we can

write

EC =
1

2π

∫ ∞

0
dk (k2 +M2)

1

2
−s∂kδ(k), (3.4)

where ω =
√
k2 +M2. (For the sake of completeness we rederive this formula for noncom-

mutative case in appendix A). Equivalently,

EC =
1

2π

∫ ∞

M
dω ω1−2s∂ωδ(ω). (3.5)

This quantity is divergent in the limit s→ 0. To get rid of the divergences one has to know

the the asymptotic behavior of the spectral density for large frequencies.
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3.1 Asymptotic behavior of the spectral density

Since the potential in (2.9) depends on the frequency ω we are dealing with a non-linear

spectral problem. To analyze the spectral density we use a method developed initially

in [20 – 22] and then adapted to NC theories in [18].

Let us consider an auxiliary eigenvalue problem

L(σ)ψσ,ω = ω2ψσ,ω, (3.6)

where

L(σ) = −∂2
x +M2 + U(x;σ). (3.7)

The functions ηω = ψω,ω solve our initial eigenvalue problem (2.9), but the spectral densities

are different. Let us denote the density of the auxiliary problem by ρ(σ, ω). Note, that

according to appendix A we are actually working with the densities from which (an infinite)

contribution from free massive fields in an infinite space has been subtracted. By using

this density, one can calculate spectral functions of the operators L(σ) (with a fixed σ). In

particular, the heat kernel for L(σ) reads

K(L(σ); t) = Tr(e−tL(σ) − e−t(−∂2
x
+M2)) =

∫

dω e−tω2

ρ(σ, ω). (3.8)

Here Tr denotes a trace over the space of square integrable functions on the real line. Again,

a subtraction of the “free” heat kernel is necessary. Note, that the integration in (3.8) must

be extended over the whole spectrum, including the bound states.

In turn, the spectral density can be expressed through the heat kernel by means of an

inverse Laplace transformation.

For any fixed real σ the operator L(σ) is a Laplace type operator with a smooth

potential. Therefore, the following asymptotic expansion1 is valid as t→ +0

K(L(σ); t) ≃
∞

∑

n=1

tn−1/2a2n(σ). (3.9)

Odd-numbered coefficients vanish since there is no boundary. The coefficient a0 does not

contribute because of the subtraction of a free heat kernel in (3.8). Two leading coefficients

read

a2(σ) = −(4π)−1/2

∫

dxU(x;σ), (3.10)

a4(σ) = (4π)−1/2

∫

dx

[

1

2
U(x;σ)2 +M2U(x;σ)

]

. (3.11)

In our case, by using (2.10) we obtain

a2(σ) =
4√
π

(θσ coth(2θσ) + 1). (3.12)

1For recent reviews on the heat kernel expansion the reader can consult [23] in the commutative case,

and [24] on NC spaces.
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For large σ we have

a2(σ) = σa2,1 + a2,0 + e.s.t. (3.13)

where

a2,1 =
4θ√
π
, a2,0 =

4√
π
, (3.14)

and the corrections in eq. (3.13) are exponentially small. For the future use we note

a2,0 = − λ√
π

∫

dx

(

Φ2 − m2

λ

)

. (3.15)

Here we used explicit form of the kink solution (2.4) and restored the m-dependence on

dimensional grounds.

Higher heat kernel coefficients a2p are integrals of local polynomials constructed from

the potential U(x;σ) and its’ derivatives. One can easily prove that for large σ

a2p(σ) = σa2p,1 + a2p,0 + O(1/σ). (3.16)

Probably, the corrections above are even exponentially small, but we shall not rely on this.

The spectral density ρ(σ, ω) taken at coinciding arguments is not the density ρ(ω)

of our initial spectral problem (2.9). As demonstrated in [20 – 22] (see also [18] for a

discussion in the framework of NC theories) one has to construct another density ̺(σ, ω)

which is related to a heat-kernel like object

K̃(σ; t) =

(

1 +
1

2σt

∂

∂σ

)

K(L(σ); t) (3.17)

through the equation

K̃(σ; t) =

∫

dω ̺(σ, ω) e−tω2

. (3.18)

Then

ρ(ω) = ̺(ω, ω). (3.19)

We do not know any differential or pseudo-differential operator L̃(σ) such that

K̃(σ; t) = Tr(e−tL̃(σ)). In any case, such L̃ cannot be a Laplacian on the real line with a

smooth potential. However, both K̃ and ̺ are well defined, which allows us to consider

other spectral functions.

For t→ +0

K̃(σ; t) ≃
∞

∑

n=0

ã2n(σ) t−
1

2
+n,

ã2n(σ) = a2n(σ) +
1

2σ
a2n+2(σ). (3.20)

For large σ we have

K̃(σ; t) ≃ t−1/2 1

2σ
a2,1 + t1/2

(

σa2,1 + a2,0 +
1

2σ
a4,1

)

+ . . . (3.21)

– 5 –



J
H
E
P
0
1
(
2
0
0
8
)
0
6
8

We are going to use this expansion to evaluate the large ω behavior of ̺(σ, ω), and, after

setting σ = ω - the large ω behavior of the physical density ρ(ω). As noted in [25, 22], the

problem is that besides from powers of ω the high frequency asymptotics of the spectral

density contain oscillating terms which are not defined by the heat trace asymptotics.

Strictly speaking, the heat kernel expansion defines the asymptotic behavior of the so-

called Riesz means of the spectral density rather than that of the spectral density itself.

This is not precisely what we need, but we learn an important lesson: the power-law

asymptotics are defined by the heat kernel expansion. Oscillating terms are less important

anyway since corresponding contributions to the vacuum energy are better convergent than

that from pure powers.

Let us consider the zeta function corresponding to ̺(σ, ω)

ζ̃(ν) =

∫

dω (ω2)−ν̺(σ, ω). (3.22)

One should be careful with possible contribution from ω = 0. One should either treat such

state separately, or add a small positive part to the mass. The details are not essential for

us since we are interested in the behavior at large ω.

There is a well know relation between residues of the zeta function and the heat kernel

coefficients

ã2k = Resν= 1

2
−kΓ(ν)ζ̃(ν) = Γ

(

1

2
− k

)

Resν= 1

2
−k ζ̃(ν). (3.23)

On the other hand, if the spectral density has a contribution behaving like cpω
p at large

ω, the zeta function has a pole term

∼ 2

∫ ∞

Ω
cpω

p−2ν ∼ cp
ν − (p+ 1)/2

, (3.24)

where Ω is a large number, and the coefficient of 2 appeared because we have to take into

account degeneracy of the continuous spectrum.

Oscillatory terms do not contribute to the poles. Indeed, after analytical continuation

from large positive ν the integral
∫ ∞

Ω dωω−ν sin(bω) has no poles on the real line.

Next we compare (3.24) with (3.23) and (3.20), (3.21) to obtain the following power

law asymptotics of the spectral density

̺(σ, ω) ≃ 1

2
√
πσ

a2,1 −
1

2
√
π
ω−2(a2,1σ + a2,0 + a4,1/(2σ)) + . . . (3.25)

For the physical spectral density we have

ρ(ω) = ̺(ω, ω) ≃ − 1

2
√
π
ω−2a2,0 + O(ω−3) (3.26)

Note, that all terms with ω−1 cancel against each other.2 This formula does not contain

possible oscillating term which cannot be obtained by these methods.

One should not be afraid of negative spectral densities. We have subtracted the spectral

density of a free massive field. What remains can have both signs.

2The terms with 1/ω in the spectral density lead to linear divergences in the vacuum energy. In the

zeta-function regularization such divergences are removed automatically, but they may cause problems in

other regularization schemes.
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3.2 Renormalization

Let us now consider renormalization of the vacuum energy. Since only the contribution

from continuous spectrum is divergent, we treat this term only

EC = µ2s

∫ ∞

M
dω ω1−2sρ(ω) , (3.27)

where we introduced a parameter µ with the dimension of mass in order to keep proper

dimension of the vacuum energy EC independently of the regularization parameter s. Next

we choose some frequency Ω and split the integral into two parts. The part from M to Ω

we leave as it is. In the part from Ω to infinity we add and subtract the asymptotics ρas(ω)

of the spectral density.

EC = µ2s

∫ Ω

M
dω ω1−2sρ(ω) + µ2s

∫ ∞

Ω
dω ω1−2s(ρ(ω) − ρas(ω))

+µ2s

∫ ∞

Ω
dω ω1−2sρas(ω) . (3.28)

The choice of Ω is simply a matter of convenience. All ultraviolet divergences are contained

in the last term. As ρas we take the first term in (3.26),

ρas(ω) = − 1

2
√
π
ω−2a2,0 = − 2

π
ω−2, (3.29)

where we took into account (3.14). We assumed that oscillating terms in the spectral densi-

ties (which are beyond our control) do not contribute to the divergences. This assumption

cannot be universally true. However, in the case we consider in this paper the subtraction

of (3.29) indeed gives a convergent integral (see below). Therefore, the assumption we

made is correct as well as the renormalization of the vacuum energy which will be done in

a moment.

The last term in (3.28) can be easily evaluated,

Ediv = µ2s

∫ ∞

Ω
dω ω1−2sρas(ω) = − 1

2
√
π
a2,0

1

2s

(µ

Ω

)2s
(3.30)

Near s = 0 Ediv behaves as

Ediv = − 1

2
√
π
a2,0

[

1

2s
+ ln

(µ

Ω

)

+ O(s)

]

= − 2

π

[

1

2s
+ ln

(µ

Ω

)

+ O(s)

]

. (3.31)

The pole term

Epole = − 1

πs

m√
2

(3.32)

(where we restored the m-dependence by using dimensional considerations) can be removed

by an infinite renormalization of the mass

δm2 =
λ

2sπ
, (3.33)
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c.f. (2.5).3 This counterterm does not depend on θ but is 2/3 of the corresponding coun-

terterm in the commutative case [10, 12].

After removing the pole one can lift the regularization taking the limit s→ 0.

E =
1

2

∑

ωB +

∫ Ω

M
dω ωρ(ω)

+

∫ ∞

Ω
dω ω(ρ(ω) − ρas(ω)) − 2

π
ln

(µ

Ω

)

(3.34)

We remind that ρ(ω) = (2π)−1∂ωδ(ω).

The presence of a free parameter µ reflects the possibility of a finite renormalization.

To fix µ one needs a normalization condition. In the commutative case in (1+1) dimensions

it is usually required that the tadpoles are cancelled by counterterms (the “no-tadpole”

condition). This condition is formulated on a constant topologically trivial background.

In noncommutative theories one-loop divergences on a constant background coincide with

the divergences in the commutative case and thus differ from the divergences in the kink

sector. (The difference is precisely the 2/3 factor discussed above). Therefore, the no-

tadpole condition is not suitable for us. In the case of commutative kink, there is the

large mass subtraction scheme [29] which is equivalent to the no-tadpole condition [12].

Although this scheme can be applied even in non-renormalizable theories, it is not clear

how to implement it in the noncommutative case. This situation is not hopeless, but it

is more natural to address it together with studying the commutative limit θ → 0. Our

numerical scheme (see below) does not work well in this limit. Therefore, we postpone

the discussion of physically motivated normalization conditions until a future publication.

Here, for the sake of simplicity, we put

µ = M. (3.35)

The values of E for other choices of µ differ by a shift −(2/π) ln(µ/M).

4. Calculation of energy

Let us start from the first term in the formula (3.34) which contains the summation over the

bound state frequencies. Here we shall distinguish the two cases: first, for θω considerably

larger than 1, and second, θω comparable or smaller than 1. When θω ≫ 1 we have very

good approximation by a square well potential (cf. figure 1). The square well potential is,

3In principle one can do renormalization directly in the action by using (3.15). The heat kernel ex-

pansion for NC φ4 constructed in [26] predicts the same multiplier of 2/3 which relates counterterms in

commutative and non-commutative cases. On should however keep in mind that the results of [26] are valid

for background fields which decay rapidly at the infinity. This is not the case of the kink solution, which

tends to different constants at two infinities. Sensitivity of the heat kernel expansion to the asymptotic

behavior of background fields is a generic feature of NC manifolds. The only exception are the expansions

for operators containing only left or only right Moyal multiplications. In this latter case universal formulae

exist as long as corresponding integrals are convergent [27, 28].
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Figure 1: The effective potential U(x, ω)+M2 for ω = 2, θ = 10 and its square well approximation.

V = 0 for |x| > l and V = −V0 < 0 for |x| < l. (In our case V0 = 4). The scattering data

for this potential read

s21 = s12 =
V0e

−2ikl(e2iωl − e−2iωl)

(k + ω)2e−2iωl − (k − ω)2e2iωl
(4.1)

s11 = s22 =
4ωke−2ikl

(k + ω)2e−2iωl − (k − ω)2e2iωl
(4.2)

with ω =
√
k2 + V0. The width of an approximating square-well potential must be chosen

such that it correctly reproduces the leading asymptotics of the phase shift, i.e. through

the condition

−2l(ω)V0 =

∫

dxU(x;ω) = −4(2 + 2θωCoth(2θω)).

As 2l(ω) = θω + c, it immediately follows c = 1, cf. figure 1. (Note, that in [19] the value

c = 0 was taken to estimate the number of bound states for large θ. To the leading order

in θ both approximations coincide, but the one chosen here reproduces the scattering data

of U(x;ω) with a better accuracy.)

It is well known from quantum mechanics that the bound states of the square well

potential obey the equations

tan(θω2) −
√

4 − ω2

ω
= 0, tan−1(θω2) +

√
4 − ω2

ω
= 0. (4.3)

In the table I. one can see some bound states calculated with the above formulas (4.3) for

θ = 10.
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Alternatively, for finding the bound states one can use the well-known WKB formula

of the first order
∫ x2

x1

√

−U(x, ωn) + ω2
ndx = π

(

n+
1

2

)

, (4.4)

where x1 and x2 are the turning points. It is well-known that WKB approach works

well for the low laying bound states, i.e. the smaller θω, the better accuracy of the WKB

approximation. At the same time, the larger θω, the better accuracy of the square well

approximation. As a result, one can see in the table I, with an example of θ = 10 case, that

highly excited bound state frequencies obtained from the square well approximation agree

very well with their WKB values in the regime of large θω. Thus the difference between the

WKB and SW (square well) data is less than fractions of one percent. Therefore we expect

that relative error of our calculations of energy for large θ should not exceed one percent.

Let us also remind that the zero mode ω0 = 0 is the same as in the commutative case. (This

is the translation zero mode). To summarize, for all bound state frequencies ωn≥1 we use

the WKB approximation, which is known to be accurate for lower eigenstates, and which

practically coincides with the frequencies obtained from the square well approximation near

the barrier.

On the contrary to the discrete spectrum, when considering integrals over continuous

part of the spectrum (second and third terms in (3.34)), we start from θ = 2, ω = 2 and

can use the square well approximation. In other words Ω = M in (3.34), if we are limited

by not small values of θ. For small θ and small ω (of the bound states and in the beginning

of the continuous part of the spectrum) the the potential does not look like square well,

but rather like a modified Pöschl-Teller potential. The WKB method is certainly justified

for that case as well for calculation of bound states, yet is computationally difficult for the

continuous spectrum. That is why we did not consider the limit of small θ.

We used the following expression for the phase shift

δ =
1

2i
ln(s211 − s221) (4.5)

(cf. appendix A). The dominant asymptotic behavior of ρ(ω)as at large ω is given by (3.29)

above.

Since we put Ω = M the second term in (3.34) vanishes. The calculation of the third

term in (3.34) was done by numerical integration with a ρ function given by a square

well approximation. The numerical integration was performed by Mathematica and the

values for different θ are given in figure 1. One can see there that the roughly linear

dependence on θ takes place. The approximating square well potential differs from the exact

potential U(x;ω) only slightly near the points x = ±(θω+1), and the form of this difference

practically does not depend on θ. Therefore, especially since we deal with a massive field,

we may hope that the total error will remain small and bounded independently of θ, so

that our conclusion about the linear growth of the integral over the continuous spectrum

will remain true even if a better approximation is used. Besides, as we shall see, the

contribution of the continuous spectrum is about 1/2 of the contribution of the bound

states, so that any error in the continuous spectrum is less important. Adding the values
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Figure 2: The values of the integral −
∫

∞

M
dω ω(ρ(ω) − ρas(ω)) as a function of θ.

for the integration over continuous spectrum (figure 1) to the sum over the bound state

frequencies (see table I, except for the case θ = 7 which is not presented explicitly in order

not too overload the table), we get

E = 2.76, (θ = 2)

E = 2.95, (θ = 3)

E = 4.66, (θ = 5) (4.6)

E = 6.49, (θ = 7)

E = 9.16, (θ = 10)

Let us note that as the contribution to the energy from the integral over continuous spec-

trum is linear with θ (see figure 1) and the contribution to the bound state is linear as well,

the final values for E as a function of θ is linear in θ (see figure 2).

In the previous section we put µ = M . Values of the vacuum energy for a dif-

ferent choice of µ are obtained from the one given in (4.6) by a constant shift, E →
E − (2/π) ln(µ/M). We fixed the mass units so that m =

√
2. In arbitrary units E should

be multiplied by m/
√

2.

5. Conclusions

In this work we found that the divergences in the zeta-regularized one-loop vacuum energy

of NC kink (defined as a half-sum over egenfrequencies) can be removed by the mass

renormalization. This renormalization is, however, different from the one required in the
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Figure 3: The values of the E as a function of θ. The angle of the slope of the line is: arctanα =

0.726.

topologically trivial sector. Although the effective potential which defines the spectrum of

excitations above the kink depends on frequencies, for intermediate and large values of the

NC parameter θ the finite part can be calculated by a combination of the WKB method

and an approximation by a square well potential. For large noncommutativity the one-loop

vacuum energy grows linearly with θ, so that sooner or later it should become larger than

the classical value thus signalling break-down of the perturbative expansion.

Our results may be improved and extended in a number of ways. First of all, we

need a method of calculations which would work for small θ and a physically motivated

normalization condition to fix the parameter µ. Having these ingredients at hand, one can

address the question whether quantum corrections to the NC kink are smooth in the limit

θ → 0 and whether they reproduce the commutative result [1] in this limit.

A. Vacuum energy in the zeta regularization

Here we derive eq. (3.4) by using the approach of Bordag [10] and making necessary mod-

ifications due to the noncommutativity. In our exposition we also use ref. [12]. First we

introduce a cut-off at large distances by imposing the Dirichlet conditions on the perturba-

tions η(−L(k)) = η(L(k)) = 0. In commutative case, when the potential has no dependence

on ω, it is enough to take L(k) = const. In our case the potential does depend on ω. We

would like to ensure that x± are far away from the boundary for all ω. This can be achieved

by taking L(k) = θω + L0 where L0 is a large positive constant. Later we shall consider
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θ = 2(WKB) θ = 3(WKB) θ = 5(WKB) θ = 10(WKB)

ω1 = 0.955 ω1 = 0.790 ω1 = 0.613 ω1 = 0.433

ω2 = 1.263 ω2 = 1.056 ω2 = 0.826 ω2 = 0.586

ω3 = 1.496 ω3 = 1.260 ω3 = 0.995 ω3 = 0.708

ω4 = 1.687 ω4 = 1.143 ω4 = 1.135 ω4 = 0.811

ω5 = 1.847 ω5 = 1.579 ω5 = 1.258 ω5 = 0.901

ω6 = 1.970 ω6 = 1.712 ω6 = 1.368 ω6 = 0.983

– ω7 = 1.828 ω7 = 1.469 ω7 = 1.058

– ω8 = 1.930 ω8 = 1.564 ω8 = 1.128

– – ω9 = 1.650 ω9 = 1.194

– – ω10 = 1.737 ω10 = 1.256

– – ω11 = 1.810 ω11 = 1.314

– – ω12 = 1.880 ω12 = 1.371

– – ω13 = 1.946 ω13 = 1.425

– – – ω14 = 1.476

– – – ω15 = 1.526

– – – ω16 = 1.574

– – – ω17 = 1.621

– – – ω18 = 1.665

– – – ω19 = 1.709

– – – ω20 = 1.751

– – – ω21 = 1.793

– – – ω22 = 1.833

– – – ω22SW = 1.828

- – – ω23 = 1.872

– – – ω23SW = 1.869

– – – ω24 = 1.908

– – – ω24SW = 1.909

– – – ω25 = 1.944

– – – ω25SW = 1.948

– – – ω26 = 1.978

– – – ω26SW = 1.985

Table 1: Values of the bound state frequencies computed by formula (4.3) (only for the highest

five states for θ = 10) and WKB frequencies found by (4.4). The comparison shows that the WKB

approximation results differ from the SW (square well) approximation only by fractions of one

percent.

the limit L0 → ∞. The frequency dependent boundary condition is the main novelty here

as compared to previous works. We shall demonstrate that it does not change the result.

Without boundaries for each momentum k there are two independent solutions η1, η2
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of the wave equation with the asymptotic behavior

η1 ∼ eikx + s12e
−ikx, η2 ∼ s22e

ikx for x→ −∞
η1 ∼ s11e

ikx, η2 ∼ s21e
ikx + e−ikx for x→ ∞. (A.1)

The potential U is symmetric under the reflection x → −x. Consequently s11 = s22,

s21 = s12. For large but finite L0 the spectrum is discrete and is defined by the condition

f(k) = ((s11 + s21)e
ikL + e−ikL)((s11 − s21)e

ikL − e−ikL) = 0, (A.2)

where the bracket with the plus (resp., minus) sign corresponds to a symmetric (resp.,

antisymmetric) solution.

It is known that if we have discrete spectrum only, the zeta-regularized vacuum energy

is a sum over the eigenfrequencies, E = 1
2

∑

n ω
1−2s
n = 1

2

∑

n(k2
n +M2)

1

2
−s. The function

∂k ln f(k) has poles at k = kn with unit residues. Therefore, we can rewrite regularized EC

in the form of a contour integral,

E
(L0)
C =

1

2

∮

dk

2πi
(k2 +M2)

1

2
−s ∂

∂k
ln f(k). (A.3)

The integration contour runs anticlockwise around the real positive semiaxis and consists

of one branch at k = Re k + iǫ, a second branch at k = Re k − iǫ, and a small segment

−ǫ ≤ Im k ≤ ǫ along the imaginary axis. Along the upper part of the contour we keep in

f(k) only the terms with exp(−ikL(k)) since exp(ikL(k)) vanishes as L0 → ∞. Along the

lower part of the contour we retain exp(ikL(k)). The contribution from the third part can

be dropped, as in [10, 12]. We have

E
(L0)
C =

1

2

∫ ∞

0

dk

2πi
(k2 +M2)

1

2
−s ∂

∂k
(4ikL(k) + ln(s211 − s222)). (A.4)

Next we take into account

s211 − s221 = e2iδ(k), (A.5)

where δ(k) is the phase shift, and subtract the contribution from free fields of mass M

satisfying the same boundary conditions (i.e., the expression (A.4) with δ(k) = 0). After

taking the limit L0 → ∞ we obtain eq. (3.4) for the vacuum energy.

Note, that taking the boundaries into account explicitly is essential in supersymmetric

theories (where the boundary conditions must be supersymmetric) [12].
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